Dry Ice: The Phantom Menace

Years after “Star Wars: Episode 1 – The Phantom Menace ” was released, George Lucas revealed that the title was a reference to Palpatine concealing his identity as an evil Sith Lord behind the façade of a good-willing public servant. And while dry ice slurries aren’t nearly as evil as Sith Lords, they do pack a few “evil” disadvantages that we’ll discuss in today’s blog post (keep reading all the way for a little surprise at the end of the blog).

Rotary evaporators are widely used in chemical and biological laboratories for distillation, solvent removal, and concentration of samples. One of the techniques employed in rotary evaporation is the use of dry ice slurries to maintain low temperature during the process. However, this seemingly routine procedure can pose serious safety hazards if not handled correctly.

A director at BMS recently noted the safety concerns that arise from the use of dry ice. As experienced scientists, we understand the potential risks of exploding condensers when water builds up in the cold finger and is not emptied and/or mistaken for acetone. The resulting rapid expansion of the slurry can lead to shattered condensers, posing the risk of physical injury to the scientists.

Exploding condensers are a significant issue that is not adequately addressed particularly in university Labs. Injuries can range from Minor cuts to serious lacerations that require medical attention. According to a report published by the Centers for Disease Control and Prevention (CDC), from 2001 to 2018 there were 2578 reported lab associated injuries involving rotary evaporators with 20% of these injuries resulting from shattered glassware.

The report also revealed that rotary evaporators were the second most common equipment involved in lab-associated injuries, after pipettes. The most common type of Injuries associated with rotary evaporators were cuts, punctures, and abrasions, with the hand being the most frequently affected body part. In addition to physical injuries, exploding condensers can also lead to equipment damage and downtime, negatively impacting productivity, research progress, and causing delays. Replacing damaged or broken equipment is often costly, and the unavailability of spares can further exacerbate the situation.

To mitigate these risks, it is crucial to ensure that proper training and education are provided to scientists who use rotary evaporators. This includes educating lab personnel on the correct use of the dry ice/acetone slurries, the importance of monitoring for water build-up in the cold finger, and appropriate disposal of the mixture after use. The use of protective gear such as gloves and eye protection should be mandatory to minimize the risk of physical injury.

Expanding on the negative impact of damaged or broken equipment due to exploding condensers, it is essential to highlight the financial cost that can be incurred. Replacing a damaged or broken condenser can be an expensive affair, and in many cases, there may not be any spares readily available in the lab. This can result in a significant delay in replacing the broken part, which can negatively impact productivity and research progress. Even if the replacement part is ordered immediately, it may take several days or weeks to arrive, which can be a major setback for ongoing experiments.

Lab guidelines and procedures should be established to ensure that all laboratory personnel are aware of the risks associated with dry ice/acetone slurries and the necessary precautions to prevent accidents and injuries. Spare parts should be readily available to facilitate the timely replacement of damaged or broken equipment.

 

In the style of master Yoda:

Widely used in chemical and biological labs, rotary evaporators are, hmmm. For distillation, solvent removal, and concentration of samples, they are employed, yes.

One technique, dry ice slurries, is used to keep temperatures low during the process. Safety hazards, however, can arise if not handled correctly, hmmm.

A director at BMS, safety concerns recently noted. Potential risks of exploding condensers, we understand. When water builds up in the cold finger and is mistaken for acetone or not emptied, rapid expansion of the slurry can lead to shattered condensers, and physical injury to the scientists, posing a significant risk, hmmm.

Not adequately addressed, exploding condensers are, particularly in university labs. Injuries, they can cause, ranging from minor cuts to serious lacerations requiring medical attention. A report by the CDC revealed 2578 lab-associated injuries involving rotary evaporators from 2001 to 2018, with 20% resulting from shattered glassware. The second most common equipment involved in lab-associated injuries, they were, after pipettes.

Cuts, punctures, and abrasions, the most common type of injuries associated with rotary evaporators were, with the hand being the most frequently affected body part. Equipment damage and downtime, they can also lead to, negatively impacting productivity and research progress, and causing delays.

To mitigate these risks, proper training and education are crucial for scientists who use rotary evaporators. Educating lab personnel on the correct use of dry ice/acetone slurries, monitoring for water build-up in the cold finger, and appropriate disposal of the mixture after use is essential. The use of protective gear such as gloves and eye protection should be mandatory to minimize the risk of physical injury.

Expanding on the negative impact of damaged or broken equipment due to exploding condensers, essential it is to highlight the financial cost that can be incurred. An expensive affair, replacing a damaged or broken condenser can be, and in many cases, no spares readily available in the lab there may be. Result in a significant delay in replacing the broken part, this can, productivity and research progress negatively impacting. Even if the replacement part is ordered immediately, several days or weeks to arrive it may take, a major setback for ongoing experiments, this can be.

Lab guidelines and procedures should be established, to ensure that all laboratory personnel are aware of the risks associated with dry ice/acetone slurries, and necessary precautions are taken to prevent accidents and injuries. Spare parts should be readily available to facilitate the timely replacement of damaged or broken equipment, hmmm.

0 replies

Leave a Reply

Want to join the discussion?
Feel free to contribute!

Leave a Reply

Your email address will not be published. Required fields are marked *